What Causes Dental Caries or Tooth Decay and Can it Be Reversed?

Dental caries or tooth decay is a disease that results in the destruction of tooth structure.  It arises from an overgrowth of specific bacteria that can metabolize fermentable carbohydrates and generate acids as waste products of their metabolism.  Streptococci mutans and Lactobacillus are the two principal species of bacteria involved in dental caries and are found in the plaque biofilm on the tooth surface [i] [ii] [iii].  When these bacteria produce acids, the acids diffuse into tooth enamel, cementum or dentin and dissolve or partially dissolve the mineral from crystals below the surface of the tooth.  If the mineral dissolution is not halted or reversed, the early subsurface lesion becomes a “cavity”.  

The tooth surface undergoes demineralization (breakdown) and remineralization continuously, with some reversibility.  When exposed to acids, the hydroxyapatite crystals dissolve to release calcium and phosphate into the solution between the crystals.  These ions diffuse out of the tooth leading to the formation of the initial carious lesion.  The reversal of this process is remineralization.  Remineralization will occur if the acid in the plaque is buffered by saliva, allowing calcium and phosphate present primarily in saliva to flow back into the tooth and form new mineral on the partially dissolved subsurface crystal remnants[iv].  The new “veneer” on the surface of the crystal is much more resistant to subsequent acid attack, especially if it is formed in the presence of sufficient fluoride.  The balance between demineralization and remineralization is determined by a number of factors.  Featherstone describes this as the “Caries Balance”, or the balance between protective and pathological factors [v].   

These early lesions (both enamel and root surface) typically have an intact hard outer surface with subsurface demineralization.  The tooth surface remains intact because remineralization occurs preferentially at the surface due to increased levels of calcium and phosphate ions.  The clinical characteristics of these early carious lesions include:

  • Loss of normal translucency of the enamel resulting in a chalky white appearance particularly when dehydrated,
  • Fragile surface layer susceptible to damage from probing, particularly in the pits and fissures,
  • Increased porosity, particularly of the subsurface, with increased potential for uptake of stain,
  • Reduced density of the subsurface, which may be detectable radiographically (depending upon mineral loss and location) or with transillumination (depending upon location and loss of mineral),
  • Potential for remineralization with increased resistance to further acid challenge particularly with the use of enhanced remineralization treatments[viii].
In summary, bacteria consume sugars and produce acids which then breakdown the tooth surface.  In the early stages of this disease, the lesions may be remineralized or re-crystalized depending upon the conditions on the tooth surface and in the mouth.  These early lesions may appear as chalky white spots.  They may be fragile and crystal structure may be disrupted or destroyed if they are picked or probed.  This dynamic disease process can be reversed or stabilized if detected early. 
 
More to follow. 


[i]  Van Houte, J., “Bacterial specificity in the etiology of dental caries”, Int. Dent. J., 1980; 30: 305 – 326 

[ii] Van Houte, J., “Role of Microorganism in the caries etiology”, J. Dent. Res., 1994; 73:  672- 681 

[iii] Featherstone, J. D. B., “The Caries Balance:  Contributing Factors and Early Detection”, CDA Journal, 2003; 13 (2): 129 – 133 

[iv] Melberg, J. R., “Remineralization:  A status report for the American Journal of Dentistry, Part 1, Am J. Dent., 1988; 1 (1): 39 – 43 

[v] Featherstone, J. D. B., “The Science and Practice of Caries Prevention”, JADA, 2000; 131: 887 – 899  

[viii]   Mount, G. J., “Defining, Classifying, and Placing Incipient Caries Lesions in Perspective”, Dent Clin N. Am, 2005, Volume 49, pages 701 – 723

 

Advertisements
This entry was posted in Uncategorized by stephenabrams. Bookmark the permalink.

About stephenabrams

Dentist and creator of The Canary System. Device for early detection and monitoring of tooth decay and cracks in teeth. Active in Ontario Dental Association dealing with access to care issues and design of government sponsored dental programs.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s